Este blog pretende recopilar las noticias más representativas de los avances de la física de estos últimos años, antes de que desaparezcan de la web.

viernes, 23 de marzo de 2018

Surface Book 2: la bestia de Microsoft para competir con el MacBook Pro

Este equipo convertible posee un diseño atractivo y está indicado para todo tipo de tareas, incluidos los juegos
Cuando Panos Panay, vicepresidente corporativo de Microsoft Devices, presentó el Surface Book 2 en el blog de Microsoft lo bautizó como ‘la bella y la bestia’; un apodo cuanto menos peculiar para describir un ordenador. Con ello, hacía referencia a que este equipo con Windows 10 tiene un exterior muy cuidado y una configuración que le permite realizar (casi) cualquier tarea. ¿El objetivo? Convertirse en una alternativa real a un dispositivo como el MacBook Pro de Apple.





Análisis y valoración


Fabricado con una aleación de magnesio, su estética es atractiva. Su acabado se corresponde con el de un producto de gama alta y su apariencia es robusta y resistente. Además, aunque a simple vista parece un portátil tradicional, el Surface Book 2 posee un diseño 2 en 1: la pantalla se separa del teclado para utilizarse de forma independiente como una tableta.

La unión de ambos componentes se realiza a través de una bisagra cuyo diseño está inspirado en una columna vertebral. Gracias a ella, la apertura de la pantalla es muy suave, la sujeción es fuerte y segura y su separación resulta muy sencilla, ya que basta con pulsar un botón para conseguirla. Además, su forma hace posible que se adapte sin problemas a la forma de la mano cuando se traslada el equipo de un lado a otro, pese a que no resulta una tarea especialmente cómoda. La culpa es de su peso, bastante superior a lo que esperábamos; un hecho que sin duda viene provocado por la presencia de una doble batería o una tarjeta gráfica, como veremos más adelante.

Buena parte de los componentes internos se encuentran en la tableta, algo indispensable para que pueda utilizarse de manera autónoma. En concreto, integra el procesador, la memoria RAM, el almacenamiento SSD, una batería… También el botón de encendido y la mayor parte de las conexiones, entre las que destacan dos puertos USB, un USB tipo C o el conector para auriculares. Echamos de menos algún interfaz para vídeo (miniHDMI, por citar una posibilidad) y, sobre todo, que el USB tipo C hubiese sido compatible con Thunderbolt 3, lo que permitiría una mayor velocidad de transferencia, entre otros beneficios.




 






Máxima claridad

Su pantalla posee un tamaño de 13,5 pulgadas, tecnología IPS y una resolución de 3.000x2.000 píxeles. Se ve de maravilla. De hecho, durante los días que han durado nuestras pruebas las imágenes siempre han destacado por sus colores vivos y una gran nitidez, aunque es cierto que su acabado brillante hace que en exteriores baje un poco la calidad. La respuesta táctil es rápida y tiene un formato 3:2 ideal para navegar por Internet, dibujar o consultar manuales. Para disfrutar de los contenidos multimedia añade además altavoces estéreo certificados por Dolby Atmos que ofrecen una calidad sonora muy positiva para tratarse de un equipo de estas dimensiones.



Sobre la pantalla se sitúa una cámara con una resolución muy ajustada y cuyo uso solo es recomendable para alguna videoconferencia ocasional y para desbloquear el dispositivo con el rostro gracias a Windows Hello. Se complementa con otra situada en la carcasa trasera con 8 megapíxeles de resolución y que, más que para hacer fotos o grabar vídeos en un contexto de ocio, está indicada para disfrutar de aplicaciones de realidad mixta. Es decir, las que combinan imágenes reales y digitales.

El teclado, por su parte, tiene un tacto gomoso muy agradable y resulta realmente cómodo de utilizar: su tamaño es óptimo y el recorrido de las teclas, adecuado. Además, dispone de un conjunto de teclas de acceso rápido para la configuración del brillo, la retroiluminación de la pantalla o la reproducción multimedia. Junto a él se sitúa un touchpad con un tamaño correcto, un tacto excelente y, como no podía ser de otra manera, soporte para los gestos multitáctiles de Windows 10.


La competencia

Apple Macbook Pro. Disponible con pantalla de 13 o 15 pulgadas, la versión más completa de este portátil cuenta con Touchbar, una barra de herramientas que cambia las opciones disponibles en función de la tarea que se esté realizando.

Dell XPS 13. Un portátil compacto y ligero que integra una pantalla de 13,3 pulgadas en el tamaño de un equipo de 11 pulgadas gracias a que reduce al máximo sus marcos.

HP Spectre X360 13. Su pantalla gira 360 grados para colocarse en distintas posiciones y utilizarlo como tableta o portátil. Se completa con cuatro altavoces configurados por Bang&Olufsen.

También es el lugar elegido para instalar la tarjeta gráfica y una segunda batería que, combinada con la que incluye la tableta, permite que la autonomía se alargue durante todo el día. En concreto, Microsoft estima su duración en 17 horas, pero depende del uso: navegando, viendo vídeos y escribiendo (mucho), hemos logrado que se extienda unas 12 horas.
Su lado más bestia

En la hoja de especificaciones del Surface Book 2 que hemos probado —hay una configuración inferior en 13,5 pulgadas y otra superior con pantalla de 15— destacan un procesador Intel Core i7 de octava generación, 16 GB de memoria RAM y una tarjeta gráfica NVIDIA GeForce 1050. Por lo tanto, no es de extrañar que el rendimiento del equipo sea excepcional en todos los supuestos. Incluso permite ejecutar programas profesionales como Autodesk o Dessault y jugar con soltura a todo tipo de títulos. El desempeño es muy positivo en este aspecto, aunque tenemos que puntualizar que no llega a la altura de un ordenador gaming.

En definitiva, el convertible de Microsoft es un ordenador con un diseño muy atractivo que brilla especialmente cuando lo utilizamos como portátil. Es solvente en todos los aspectos (reproducción multimedia, trabajo, juegos…) pero necesita mejoras en la conectividad, en la calidad de las cámaras (sobre todo la frontal de cara a las videoconferencias) o en el peso. Aun así, su mayor hándicap se encuentra en el precio, que alcanza los 3.449 euros. Si no importa reducir el almacenamiento, la memoria RAM o prescindir de la gráfica, está disponible a partir de 1.749 euros.



Ficha técnica

Pantalla: PixelSense de 13,5 pulgadas, 3.000x2.000 píxeles de resolución (267 ppp), relación de aspecto 3:2, contraste 1.600:1 y capacidad multitáctil con reconocimiento de 10 toques

Procesador: Intel Core i7-8650U (cuatro núcleos) de 8ª generación con hasta 4,20 GHz de turbo máximo

Gráficos: NVIDIA GeForce GTX 1050 con 2 GB de memoria gráfica GDDR5

Memoria RAM: 16 GB

Almacenamiento: 1 TB

Cámara: Frontal de autenticación facial con Windows Hello, 5 MP con vídeo HD de 1080p; posterior con enfoque automático de 8 MP con vídeo Full HD 1.080p

Batería: Hasta 17 horas de reproducción de vídeo

Sistema operativo: Windows 10 Pro Creators Update de 64 bits

Tamaño: 312x232x15–23 mm

Peso: 1,534 Kg

Conectividad: Wi-Fi 802.11ac , Bluetooth 4.1 LE

Sensores: Luz ambiental, proximidad, acelerómetro, giroscopio, magnetómetro

Puertos: 2 USB 3.0 de tipo A, USB de tipo C, lector de tarjetas SDXC UHS-II, auriculares de 3,5 mm, 2 Surface Connect

Otros: Prueba de Office 365 de 30 días, micrófonos duales, altavoces frontales estéreo con audio Dolby Audio Premium

miércoles, 7 de marzo de 2018

Descubierta una nueva propiedad del grafeno que revolucionará el mundo de la física

Un equipo del MIT logra por primera que se convierta en superconductor



Imagínese que pudiera cortar en láminas extremadamente finas, de tan solo un átomo de espesor, la viruta que se obtiene al sacarle punta a un lápiz. Si a continuación observara esas láminas al microscopio, vería una malla de átomos de carbono, dispuestos en hexágonos. Es el grafeno, un material bidimensional con unas propiedades asombrosas: además de ser el más fino que existe, muy ligero y flexible, a la vez que cientos de veces más duro que el acero y más conductivo que el cobre.

Ahora un equipo de científicos del Instituto de Tecnología de Massachusetts (MIT), en Cambdrige (EE.UU.) liderado por el investigador valenciano Pablo Jarillo-Herrero, acaban de descubrir una nueva y fascinante propiedad de este supermaterial que podría revolucionar la física teórica.



Cuando colocan dos capas de grafeno, una sobre otra pero rotadas con el ángulo mágico (1,1 grados), el sistema que resulta actúa como los materiales superconductores no convencionales.
Cuando colocan dos capas de grafeno, una sobre otra pero rotadas con el ángulo mágico (1,1 grados), el sistema que resulta actúa como los materiales superconductores no convencionales. (Yuan Cao y Pablo Jarillo-Herrero)

Han dispuesto dos láminas de grafeno, una encima de otra, pero no perfectamente alineadas, sino una de ellas girada con un ‘ángulo mágico’. En esa disposición exclusivamente los investigadores han visto que ese ‘sándwich’ de grafeno es capaz de conducir electrones sin resistencia. Es decir, se convierte en un superconductor, un material capaz de transportar electricidad sin pérdidas.

“Es la primera vez que se consigue este tipo de superconductividad en una estructura de este tipo, donde tienes una capa encima de otra, ninguna de las cuales es superconductora, y que simplemente por jugar con el ángulo de rotación aparece esta propiedad de la superconductividad. Es bastante extraordinario y no se había logrado nunca”, explica Jarillo-Herrero a Big Bang en una entrevista.
Muestra de grafeno, en el Institut de ciències fotòniques


Muestra de grafeno, en el Institut de ciències fotòniques (.)

La superconductividad, una propiedad de algunos materiales que se descubrió hace alrededor de un siglo, podría revolucionar la trasmisión de energía, los sistemas de transporte e incluso los escáneres en medicina. De hecho, actualmente ya se emplean superconductores en los escáneres de resonancia magnética; o para crear campos magnéticos muy grandes, como en los aceleradores de partículas, apunta Àlvar Sànchez, físico del grupo de superconductividad de Universitat Autònoma de Barcelona (UAB).

La superconductividad, una propiedad de algunos materiales que se descubrió hace alrededor de un siglo, podría revolucionar la trasmisión de energía, los sistemas de transporte e incluso los escáneres en medicina

Hasta el momento se conocían dos tipos de superconductores, los convencionales, que son metales que han de enfriarse a temperaturas del cero absoluto. Y los no convencionales, que mayoritariamente no son buenos metales, y que pueden superconducir electricidad a una temperatura más elevada que los anteriores, aunque el mecanismo por el que funcionan es un enigma de la física.

El principal problema que presentan es que, para funcionar, necesitan hacerlo a muy bajas temperaturas, entre -273 y -140ºC, por lo que se debe dedicar mucha energía a refrigerarlos. De ahí que por el momento se utilicen de forma limitada.

No obstante, los resultados de Jarillo-Herrero y su grupo, que se recogen en dos artículos en Nature esta semana, podrían abrir la puerta a entender mejor cómo funcionan los superconductores no convencionales y dar un paso más hacia poder usarlos en el día a día a temperatura ambiente.

“El grafeno es un material muy particular en el que sus propiedades electrónicas cambian dependiendo del número de capas. Hasta hace poco siempre se usaban capas alineadas, hasta que unos investigadores se dieron cuenta de que no tenía por qué ser así y predijeron que si se rotaban las capas, eso daría lugar a un objeto inusual con unas propiedades muy especiales, puesto que los electrones se comportarían de forma distinta”, dice Jarillo-Herrero.

    “El grafeno cambiará nuestras vidas”
    Frank Koppens: “Podemos resolver el problema de la energía”

Este investigador y su grupo han descubierto que cuando se superponen las dos capas de grafeno con un ángulo de 1,1º, el ‘ángulo mágico’, como lo denominan en el trabajo, y las enfrían a 1,7 grados por encima del cero absoluto, tienen un comportamiento aislante: los electrones en esas capas interactúan de forma muy fuerte y no se mueven. Pero al inducir una pequeña densidad de carga eléctrica al estado aislante, el grafeno se vuelve superconductor de forma completamente controlada.

“Hemos comprobado que esta estructura de grafeno tiene propiedades extraordinarias, algunas estaban predichas y otras son inesperadas. La gran relevancia de estos artículos es que abre un nuevo campo de propiedades que antes no se conocían del grafeno”, considera Jarillo-Herrero.
El tren magnético Maglev de Shanghai, que levita, se basa en campos magnéticos generados con superconductores.
El tren magnético Maglev de Shanghai, que levita, se basa en campos magnéticos generados con superconductores. (fzant / Getty)



Aunque este descubrimiento está aún lejos de tener aplicaciones directas, para el investigador valenciano, “si llegamos a entender muy bien este fenómeno de la superconductividad no convencional, algún día podremos llegar a hacer superconductores a temperaturas más elevadas y, por tanto, que tengan aplicaciones más extendidas”.

    El grafeno avanza hacia las aplicaciones

Esta investigación, financiado por la Fundación Nacional para la Ciencia de los EEUU y la Fundación Gordon y Betty Moore, el Moore de la ley de Moore y fundador de Intel, es para el investigador Icrea Frank Koppens, físico del ICFO- Institut de Ciències Fotòniques experto en grafeno, “uno de los trabajos científicos más importantes que he visto en mi carrera como investigador. Han descubierto un nuevo tipo de superconductividad en un sistema totalmente controlable y además pueden pasar de aislante a superconductor de forma controlada. Es un nuevo tipo de física”.

“Es uno de los trabajos científicos más importantes que he visto en mi carrera como investigador”
Frank Koppens

ICFO

Según este investigador, que no ha participado en ninguno de los dos estudios, “lo que limitaba a los superconductores hasta el momento era que no se entendía del todo cómo funcionaban y no se tenía el suficiente control. Esta es la primera vez que se crean casi desde cero, que los pueden controlar, encender y apagar. Tampoco nunca antes se había visto que se pudiera pasar de un aislante perfecto a un superconductor perfecto, algo que a priori parece contrario al sentido común”.

Para Sànchez, de la UAB, “estos resultados son muy interesantes porque han descubierto una nueva familia de superconductores en un sistema tan interesante como el grafeno. Y este nuevo sistema es un banco de pruebas para entender la física de los superconductores no convencionales, que se utilizan sin entender el mecanismo. Podría abrir la puerta a desarrollar desde sensores mucho más sensibles a ordenadores cuánticos”.

Cuando la materia oscura no gobernaba el universo

Un análisis de galaxias de hace 10.000 millones de años muestra que estaban dominadas por la materia visible. Ahora, es la oscura la que determina la forma en que giran


Cuando los astrónomos clavan sus telescopios en el cielo profundo, muy lejos de las estrellas que ocupan nuestro vecindario, nos hacen viajar a mundos lejanos, pero también nos transportan al pasado. Uno de esos viajes en el tiempo lo realizó recientemente un grupo internacional de astrónomos a bordo del Very Large Telescope, un sistema de cuatro telescopios gigantescos que el Observatorio Europeo Austral (ESO) tiene en el desierto chileno de Atacama.

La intención de los científicos, liderados por Reinhard Genzel, del Instituto Max Planck para Física Extraterrestre en Garching, Alemania, era averiguar qué sucedía en el universo hace 10.000 millones de años, durante una época de mayor formación de galaxias. Sus observaciones mostraron que las cosas han cambiado mucho en el cosmos desde entonces.

En los años setenta, Vera Rubin y Kent Ford, del Instituto Carnegie de Washington (EE UU), vieron que las estrellas en los bordes de las galaxias giraban demasiado rápido. Teniendo en cuenta la masa visible a través de los telescopios y las leyes físicas conocidas, al alejarse del pozo gravitatorio que acelera las espirales galácticas la velocidad de las estrellas debería disminuir. Sin embargo, no lo hacía. Y tampoco salían disparadas por falta de atracción y exceso de velocidad. Parecía que una masa ingente e invisible, mucho mayor que la luminosa captada por los telescopios, las mantenía en su sitio. Tras descartar la posibilidad de que Newton y Kepler estuviesen equivocados, se aceptó que la explicación más plausible al misterio consistía en aceptar la existencia de un halo gigantesco de materia oscura que otorgaba a la galaxias la masa necesaria para que se comportasen como lo hacían.

La materia visible ya se había condensado en forma de galaxias cuando la oscura seguía muy esparcida



Esa materia oscura, que aún no se ha podido detectar de manera directa y es conocida solo a través de sus efectos en grandes objetos cósmicos, es uno de los elementos fundamentales para entender el funcionamiento del universo. Ahora, es el elemento dominante en las galaxias conocidas, pero, como han descubierto Genzel y su equipo, eso no siempre fue así.

Los investigadores, que han publicado sus resultados en la revista Nature, vieron que en las galaxias de hace 10.000 millones de años, las regiones externas rotaban más lento que las cercanas al núcleo. Eso era lo que habrían esperado astrónomos como Rubin y Ford cuando observaron las galaxias de nuestro vecindario cercano, pero en este caso, justo aquel comportamiento fue lo que sorprendió a los autores. Parece que cuando el Universo era más joven, en aquel momento de efervescencia creadora 4.000 millones de años después del Big Bang, la materia visible aún era la que dominaba en las galaxias.

Una de las explicaciones para esa ausencia de materia oscura la ofrecía el astrónomo Mark Swinbank, de la Universidad de Durham, en Reino Unido, en otro artículo publicado en Nature. Allí explicaba que la materia visible se condensó rápidamente en los discos planos que hoy identificamos con las galaxias mientras la materia oscura continuó mucho más esparcida durante miles de millones de años. “Esto se debe a que el gas [formado por materia visible] interactúa con su entorno con mayor fuerza que la materia oscura y por lo tanto pierde energía más rápido”, explica.

Mientras la materia oscura fue encontrando su lugar, amontonándose para formar las grandes esferas invisibles que ahora gobiernan los destinos de las galaxias, la materia visible, la única que de momento hemos podido detectar, creó discos galácticos de dos velocidades, fieles a lo que esperaron los astrónomos durante décadas. Mucho después, cuando unos primates que salieron de África a dos patas permitían incluso que las hembras de su especie escrutaran los cielos, la materia oscura llevaba millones de años gobernando el baile galáctico.

Descubierta una estrella que no debería existir

El hallazgo de un astro con más del doble de años que el Sol en el halo de la galaxia ayuda a reconstruir la historia del cosmos

En el halo de la galaxia, esa especie de esfera gigantesca gobernada por la materia oscura que rodea el disco luminoso que alberga a la Tierra, se encuentran algunas de las estrellas más antiguas que se conocen. Con más del doble de antigüedad que el Sol (aparecieron unos 500.000 años después del Big Bang), esas estrellas llevan existiendo prácticamente desde el nacimiento del universo. Como los fósiles que ayudan a reconstruir la historia de la vida en nuestro planeta, en ellas se pueden hallar muchas claves sobre la evolución del cosmos.



Un equipo del Instituto Astrofísico de Canarias (IAC) ha publicado en la revista The Astrophysical Journal Letters el descubrimiento de uno de estos astros. Bautizada como J0023+0307, se encuentra a 9.450 años luz de distancia y pertenece a una segunda generación de estrellas del universo. La primera, surgida de la acumulación de las masas de hidrógeno al inicio de la historia cósmica, fue formada por estrellas gigantescas y de vida muy corta. De este tipo sería la nacida 180 millones de años después del gran estallido que puso fin a la Edad Oscura del universo.

La nueva estrella nació casi 9.000 millones de años antes que el Sol

Se cree que ninguno de aquellos objetos ha sobrevivido hasta nuestros días. Hundidos bajo el peso de su propia gravedad y el veloz agotamiento de su combustible, estallaron en forma de supernovas. Pero aquello, como sabemos, solo fue el principio. En esos estallidos, los átomos ligeros se fundieron para formar otros más pesados y así salieron despedidos al medio interestelar para convertirse en ladrillos con los que se formaron nuevas estrellas.

De esa nueva generación es J0023+0307. Los científicos del IAC buscan “estrellas pobres en metales porque son las más antiguas de la Vía Láctea y contienen información sobre cómo era el universo al principio”, explica David Aguado, líder del proyecto. Estas estrellas tienen ya masas más bajas, similares a la del Sol, y cuentan con más elementos pesados, como el carbono, que normalmente sirve como aglutinante estelar. En este caso, los autores del estudio se vieron sorprendidos por la escasa cantidad de ese elemento encontrada en la estrella recién descubierta. “Por eso decimos que esta estrella no debería existir”, apunta Carlos Allende Prieto, coautor del trabajo. Pero existe, y eso demuestra que los modelos que reconstruyen la evolución del universo son mejorables.

Aguado considera improbable que en torno a esa estrella extraña y antiquísima orbiten planetas. Los materiales pesados como el hierro o los elementos radiactivos que podemos encontrar en nuestro sistema solar, necesarios para formar planetas rocosos como la Tierra, requieren de sucesivos estallidos de supernovas que los generen fusionando elementos más ligeros. J0023+0307 tiene además otras diferencias con estrellas más jóvenes como el Sol. Según explica Aguado, se formaron fuera de una galaxia, en solitario, aunque luego se pudieron empezar a relacionar con otros astros en cúmulos globulares. Después, muchos de esos cúmulos formaron protogalaxias y galaxias en las que estas estrellas quedaron integradas.

El equipo del IAC quiere continuar ahora su investigación sobre estas estrellas del halo galáctico para reconstruir la historia cósmica. Próximamente, pretenden iniciar un proyecto con el Very Large Telescope (VLT) que tiene el Observatorio Europeo Austral (ESO) en el desierto de Atacama, en Chile. Allí contarán con un telescopio del tamaño adecuado y las herramientas necesarias para analizar los elementos químicos que componen la estrella. “El Gran Telescopio de Canarias tiene el tamaño adecuado, pero, aunque va a contar con uno pronto, no tiene aún un espectrógrafo de alta resolución”, explica Aguado. “Por eso, para no perder la carrera científica, vamos a hacer esa investigación en el ESO, del que España forma parte”, añade.

Como los buscadores de fósiles, los astrónomos siguen rellenando espacios vacíos de la genealogía cósmica, que es, como la antropológica, una manera de saber un poco más quienes somos. Y en el horizonte, la esperanza de encontrar una de aquellas estrellas primigenias, que nos lleven un poquito más cerca del conocimiento de todo y que, como J0023+0307, no debería existir.