EUROPA PRESS / VÍDEO:EUROPA PRESS 28.10.2014 - 15:13h Un científico ha calculado la edad del universo en 14.885 +/- 0,040 mil millones de años, más que la estimación por restos dejados por el 'Big Bang'. Una estrella llamada HD 140283 o 'estrella Matusalén', que se encuentra a 190 años luz de la Tierra en la constelación de Libra, ha sido clave para el hallazgo.
Una vieja estrella datada en 14.460 millones de años, ha llevado a determinar que el universo —con una edad estimada en 13.817 millones de años— podría ser más viejo de lo que se creía.
El astro, llamado HD 140283 o 'estrella Matusalén', se encuentra a 190 años luz de la Tierra en la constelación de Libra y ha dejado a los investigadores "perplejos".
Se trata de una rara estrella sub-gigante y pobre en metales, que fue descubierta desde hace un siglo como una estrella de alta velocidad, aunque su presencia en el vecindario del Sistema Solar y su composición ponían en duda esta teoría.
En el artículo, publicado en International Journal of Exergy, los científicos revelaron que, en última instancia, los márgenes de error en la estimación de la edad de la estrella eran mucho más anchos de lo que la investigación original —la de su descubrimiento— sugería.
Estos márgenes de error podrían rejuvenecerla, pero aún así seguiría siendo uno de los objetos estelares más antiguos conocidos en el Universo, aunque dentro de los límites del tiempo desde el 'Big Bang'.
Pero, esto plantea preguntas como si existe alguna posibilidad de que esta estrella fuera tan antigua como sugieren las mediciones originales.
Uno de los autores, Birol Kilkis, cree que sí. Este científico introdujo en 2004 el Modelo de Radiación del Universo (RUM), que sugiere que la exergía —una propiedad termodinámica que permite determinar el potencial de trabajo útil de una determinada cantidad de energía— fluye desde el 'Big Bang', hasta lo que él llama un 'disipador térmico' de tamaño infinito en el cero absoluto (0ºK) lejano, lejano en el futuro.
Usando el modelo RUM, Kilkis calcula la edad del universo en 14.885 +/- 0,040 mil millones de años, lo cual es ligeramente mayor que la estimación de fondo de microondas (los restos dejados por el 'Big Bang'), pero se adapta fácilmente a la edad original de HD 140283. La teoría RUM de Kilkis sugiere que la expansión del universo se ha acelerado 4.400 millones años después del Big Bang, que bien puede adaptarse a la idea de la energía oscura.
Este blog pretende recopilar las noticias más representativas de los avances de la física de estos últimos años, antes de que desaparezcan de la web.
lunes, 28 de enero de 2019
La señal wifi, convertida en electricidad
Un grupo de investigadores crea una antena que capta la energía de las ondas y la convierte en corriente continua
Transmitir energía eléctrica a través del aire era una de las ideas que Nikola Tesla llegó a patentar hace más de un siglo. Ahora, investigadores de universidades de EE UU y España han logrado capturar la energía contenida en la señal emitida por dispositivos wifi y convertirla en electricidad. Usando un nanomaterial de solo tres átomos de espesor, han diseñado una antena que transforma las ondas electromagnéticas en corriente continua. Aunque la potencia lograda no supera el rango de los microvatios, la flexibilidad mecánica del material y la omnipresencia de las señales electromagnéticas necesarias para conectar millones de ordenadores y móviles a internet acercan el sueño de una electrónica que esté en todas partes.
"Toda radiación electromagnética contiene energía", explica el profesor de ingeniería eléctrica e informática del Instituto Tecnológico de Massachusetts (EE UU) Tomás Palacios. "No es muy diferente de la luz solar, solo cambia la frecuencia que, en el wifi, es mucho más baja", añade el responsable del Grupo de Materiales y Dispositivos Semiconductores Avanzados del MIT y coautor de esta investigación.
Los científicos han creado un dispositivo que logra capturar la energía usada por la señal wifi para transmitir datos o captarlos. Esta señal se propaga en todas direcciones, aunque el destino de la información sea un único punto. El resto se pierde. Para aprovecharla, los investigadores crearon una antena especial (rectena o antena rectificadora) que recibe la radiación emitida por dispositivos inalámbricos, como los routers o puntos de acceso inalámbrico, pero también cualquier aparato con wifi, como portátiles, televisores, móviles, tabletas... que usan las mismas frecuencias, es decir, las bandas de los 2.4 gigahercios (GHz) y los 5.6 GHz.
El problema es que esta energía del ambiente llega hasta la antena como corriente alterna y hay que rectificarla. "Es como una pila que cambiara de polaridad continuamente. Para alimentar los circuitos electrónicos necesitamos un voltaje constante", subraya Palacios. Para lograr esta conversión a corriente continua, y aquí está la gran aportación de esta investigación, publicada en la revista Nature, han diseñado un diodo con un material que tiene unas propiedades físicas, mecánicas y eléctricas que no posee ni el grafeno: el disulfuro de molibdeno (MoS2).
Como el grafeno, el MoS2 es un material bidimensional. Si el primero tiene un grosor de un átomo, el segundo lo tiene de tres. Eso les da una flexibilidad que jamás tendrán el silicio o el arseniuro de galio, sobre los que se sustentan la electrónica y tecnología actuales. Ambos son también fáciles y muy baratos de producir. Pero, a diferencia del MoS2, el grafeno no es un semiconductor, lo que limita sus posibilidades en el campo de la electrónica.
En la antena rectificadora fabricada por el equipo de Palacios, la energía captada llega como corriente alterna a uno de los electrodos (ánodo, hecho de paladio) y sale con polaridad constante por el otro electrodo (cátodo, de oro). Entremedias, el encargado de hacer la magia es el disulfuro de molibdeno (MoS2) y lo hace a una velocidad ideal para las altas frecuencias usadas en las señales wifi. "Nos permite crear un diodo lo suficientemente rápido como para rectificar hasta en la banda de los 10 GHz", comenta el profesor del grupo de microondas y radar de la Universidad Politécnica de Madrid y coautor de la investigación, Jesús Grajal de la Fuente.
El director del grupo de materiales y dispositivos semiconductores avanzados del MIT, el jiennense Tomás Palacios. ampliar foto
El director del grupo de materiales y dispositivos semiconductores avanzados del MIT, el jiennense Tomás Palacios. Lillie Paquette
Pero para este ingeniero, como para Palacios, la clave de su dispositivo es su enorme flexibilidad. "Frente al MoS2, el silicio es un ladrillo", dice. Además de caro y frágil, por mucho que avance la miniaturización, siempre será rígido. Aquella es una característica que logra su extremo solo en los materiales bidimensionales y que permitiría, por ejemplo, cubrir una pared o todo un edificio de sensores que se alimentarían de la energía del ambiente.
"¿Y si fuéramos capaces de desarrollar sistemas electrónicos que pudiéramos desplegar a lo largo de un puente o cubrir toda una autopista o las paredes de nuestras oficinas y llevar la inteligencia electrónica a todo lo que nos rodea? ¿De dónde sacarías la energía para tanta electrónica", pregunta Palacios. No habría baterías ni enchufes suficientes. Solo enchufándolos al aire, a la energía inalámbrica, se podría imaginar algo así.
Los creadores del sistema imaginan un futuro donde la electrónica es ubicua y se alimenta de la energía ambiental
En todo esto hay una limitación que resulta ser su gran virtud. La potencia de la señal wifi (y la de otras tecnologías inalámbricas, como las comunicaciones móviles de cuarta y quinta generación) es por necesidad muy baja. "El wifi necesita en torno a los 100 microvatios, 100.000 veces menos potencia de la requerida para encender una bombilla Led", recuerda Palacios. Así que no se podrá cargar el portátil con una de estas antenas especiales.
"Es poco, pero bastará para alimentar a sensores de todo tipo. Ahora, la electrónica está limitada a objetos macroscópicos, el móvil, ordenador, el coche. En el futuro será ubicua. Estará en la ropa que llevemos, dentro de nosotros, en los edificios... y aprovechará la energía del ambiente", sostiene el profesor español del MIT.
"Toda radiación electromagnética contiene energía", explica el profesor de ingeniería eléctrica e informática del Instituto Tecnológico de Massachusetts (EE UU) Tomás Palacios. "No es muy diferente de la luz solar, solo cambia la frecuencia que, en el wifi, es mucho más baja", añade el responsable del Grupo de Materiales y Dispositivos Semiconductores Avanzados del MIT y coautor de esta investigación.
Los científicos han creado un dispositivo que logra capturar la energía usada por la señal wifi para transmitir datos o captarlos. Esta señal se propaga en todas direcciones, aunque el destino de la información sea un único punto. El resto se pierde. Para aprovecharla, los investigadores crearon una antena especial (rectena o antena rectificadora) que recibe la radiación emitida por dispositivos inalámbricos, como los routers o puntos de acceso inalámbrico, pero también cualquier aparato con wifi, como portátiles, televisores, móviles, tabletas... que usan las mismas frecuencias, es decir, las bandas de los 2.4 gigahercios (GHz) y los 5.6 GHz.
El problema es que esta energía del ambiente llega hasta la antena como corriente alterna y hay que rectificarla. "Es como una pila que cambiara de polaridad continuamente. Para alimentar los circuitos electrónicos necesitamos un voltaje constante", subraya Palacios. Para lograr esta conversión a corriente continua, y aquí está la gran aportación de esta investigación, publicada en la revista Nature, han diseñado un diodo con un material que tiene unas propiedades físicas, mecánicas y eléctricas que no posee ni el grafeno: el disulfuro de molibdeno (MoS2).
Como el grafeno, el MoS2 es un material bidimensional. Si el primero tiene un grosor de un átomo, el segundo lo tiene de tres. Eso les da una flexibilidad que jamás tendrán el silicio o el arseniuro de galio, sobre los que se sustentan la electrónica y tecnología actuales. Ambos son también fáciles y muy baratos de producir. Pero, a diferencia del MoS2, el grafeno no es un semiconductor, lo que limita sus posibilidades en el campo de la electrónica.
En la antena rectificadora fabricada por el equipo de Palacios, la energía captada llega como corriente alterna a uno de los electrodos (ánodo, hecho de paladio) y sale con polaridad constante por el otro electrodo (cátodo, de oro). Entremedias, el encargado de hacer la magia es el disulfuro de molibdeno (MoS2) y lo hace a una velocidad ideal para las altas frecuencias usadas en las señales wifi. "Nos permite crear un diodo lo suficientemente rápido como para rectificar hasta en la banda de los 10 GHz", comenta el profesor del grupo de microondas y radar de la Universidad Politécnica de Madrid y coautor de la investigación, Jesús Grajal de la Fuente.
El director del grupo de materiales y dispositivos semiconductores avanzados del MIT, el jiennense Tomás Palacios. ampliar foto
El director del grupo de materiales y dispositivos semiconductores avanzados del MIT, el jiennense Tomás Palacios. Lillie Paquette
Pero para este ingeniero, como para Palacios, la clave de su dispositivo es su enorme flexibilidad. "Frente al MoS2, el silicio es un ladrillo", dice. Además de caro y frágil, por mucho que avance la miniaturización, siempre será rígido. Aquella es una característica que logra su extremo solo en los materiales bidimensionales y que permitiría, por ejemplo, cubrir una pared o todo un edificio de sensores que se alimentarían de la energía del ambiente.
"¿Y si fuéramos capaces de desarrollar sistemas electrónicos que pudiéramos desplegar a lo largo de un puente o cubrir toda una autopista o las paredes de nuestras oficinas y llevar la inteligencia electrónica a todo lo que nos rodea? ¿De dónde sacarías la energía para tanta electrónica", pregunta Palacios. No habría baterías ni enchufes suficientes. Solo enchufándolos al aire, a la energía inalámbrica, se podría imaginar algo así.
Los creadores del sistema imaginan un futuro donde la electrónica es ubicua y se alimenta de la energía ambiental
En todo esto hay una limitación que resulta ser su gran virtud. La potencia de la señal wifi (y la de otras tecnologías inalámbricas, como las comunicaciones móviles de cuarta y quinta generación) es por necesidad muy baja. "El wifi necesita en torno a los 100 microvatios, 100.000 veces menos potencia de la requerida para encender una bombilla Led", recuerda Palacios. Así que no se podrá cargar el portátil con una de estas antenas especiales.
"Es poco, pero bastará para alimentar a sensores de todo tipo. Ahora, la electrónica está limitada a objetos macroscópicos, el móvil, ordenador, el coche. En el futuro será ubicua. Estará en la ropa que llevemos, dentro de nosotros, en los edificios... y aprovechará la energía del ambiente", sostiene el profesor español del MIT.
Suscribirse a:
Entradas (Atom)