Los astrónomos creen que sin esa capa protectora, esta nube de alta velocidad (HVC) conocida como la Nube de Smith se habría desintegrado
Como una bala envuelta en una coraza metálica, una nube de hidrógeno que ha irrumpido en la Vía Láctea parece estar encerrada en una cáscara de materia oscura , según un nuevo análisis de datos realizado con el telescopio estadounidense GBT (Green Bank Telescope).
Los astrónomos creen que sin esa capa protectora, esta nube de alta velocidad (HVC) conocida como la Nube de Smith se habría desintegrado hace mucho tiempo cuando por primera vez chocó con el disco de nuestra galaxia.
Si es confirmado por otras observaciones, un halo de materia oscura podría significar que la Nube de Smith es en realidad una galaxia enana fracasada, un objeto que tiene todo el material adecuado para formar una verdadera galaxia, pero que simplemente no basta para producir estrellas. "La nube Smith es realmente única en su clase.
Es rápida, bastante extenso, y queda lo suficientemente cerca como para estudiarla en detalle", dijo Matthew Nichols, del Observatorio Sauverny en Suiza y autor principal de un artículo aceptado para su publicación en la revista Monthly Notices de la Royal Astronomical Society.
"También es un poco un misterioso, ya que un objeto como este simplemente no debería sobrevivir a un viaje a través de la Vía Láctea, pero toda la evidencia apunta al hecho de que lo hizo" Estudios anteriores de la Nube de Smith revelan que pasó primero a través de nuestra galaxia hace muchos millones de años.
Tras un exmaen y modelado de la nube, los astrónomos creen ahora que la Nube de Smith contiene y está en realidad envuelta en un "halo " sustancial de materia oscura: la materia aún invisible pero gravitacionalmente significativa que constituye aproximadamente el 80 por ciento de toda la materia en el Universo .
"Con base en la órbita prevista actualmente, se muestra que sería poco probable que una nube libre de materia oscura sobreviva a este cruce de disco ", observó Jay Lockman , un astrónomo del Observatorio Nacional de Radioastronomía en Green Bank , West Virginia, y uno de los coautores del estudio.
"Mientras, una nube de materia oscura sobrevive fácilmente el paso y produce un objeto que se parece a la Nube de Smith en la actualidad". La Vía Láctea está rodeada por centenares de nubes de alta velocidad, que se componen principalmente de gas hidrógeno demasiado enrarecido para formar estrellas en cualquier cantidad detectable.
La única manera de observar estos objetos , por lo tanto , es con radiotelescopios exquisitamente sensibles como el GBT , capaces de detectar las emisiones débiles de hidrógeno neutro . Si fuera visible a simple vista , la Nube de Smith cubriría casi tanto cielo como la constelación de Orión .
La mayoría de las nubes de alta velocidad comparten un origen común con la Vía Láctea, ya sea como bloques de construcción sobrantes de la formación de galaxias o cúmulos de materiales lanzados por las supernovas en el disco de la galaxia. Algunos, sin embargo, son intrusos que vienen desde más lejos con su propio pedigrí.
Un halo de materia oscura que fortalecería la Nube de Smith es una de esas raras excepciones. Actualmente, la nube Smith está a cerca de 8.000 años luz de distancia del disco de nuestra galaxia. Se está moviendo hacia la Vía Láctea a más de 150 kilómetros por segundo y se prevé que impactará de nuevo en aproximadamente 30 millones de años. "Si se confirma que tiene materia oscura esto sería , en efecto, una galaxia fracasado", dijo Nichols.
"Tal descubrimiento podría comenzar a mostrar el límite inferior de lo pequeña que podría ser una galaxia". Los investigadores creen que esto también podría mejorar nuestra comprensión de la formación más antigua estrella de la Vía Láctea.
Este blog pretende recopilar las noticias más representativas de los avances de la física de estos últimos años, antes de que desaparezcan de la web.
lunes, 26 de mayo de 2014
sábado, 10 de mayo de 2014
El misterio de los agujeros negros
Los agujeros negros estaban, sin que apenas nadie lo percibiera en aquel entonces, en el centro la Teoría de la Relatividad General de Einstein. Nadie excepto el excelso matemático y astrofísico que dirigía a principios del Siglo XX el Observatorio de Postdam, Karl Schwarzschild, quien se daría cuenta pronto de su existencia y su importancia en la gravitación universal.
Pero la Primera Guerra Mundial complicó mucho su trabajo científico. Cuando Einstein publicó los artículos en los que enunciaba las ecuaciones del campo gravitatorio de su teoría, Schwarzschild se encontraba destinado en los campos de batalla de Rusia, encargado de calcular la trayectoria de los proyectiles de artillería. Él mismo se había presentado voluntario al ejército del Imperio alemán. Pero el trabajo debía quedársele pequeño porque, tras leer el trabajo de Einstein, se puso inmediatamente a aplicar las nuevas ecuaciones a los objetos del Cosmos.
Y las conclusiones no tardaron en llegar. En enero de 1916 -sólo tres meses después de la publicación de la Teoría de la Relatividad General-, Schwarzschild envió por correo sus resultados a Einstein. «Estoy seguro de que permitirán a su teoría brillar con mayor pureza», escribió desde el frente ruso el astrofísico alemán. El propio genio de la Física se rindió ante los cálculos de Schwarzschild. «Jamás habría esperado que la solución exacta al problema pudiera formularse de una manera tan simple», respondió, según cita el escritor Walter Isaacson en la biografía titulada Einstein, su vida y su universo (Debate).
Dyson: «Los agujeros negros no son raros y no constituyen un adorno accidental de nuestro universo. Son los únicos lugares del Universo donde la Teoría de la Relatividad de Einstein se muestra en toda su potencia y esplendor»
Pero no en todo estaba de acuerdo con los cálculos de Schwarzschild. Éste se había centrado en la curvatura del espacio-tiempo, tanto fuera como en el interior de una estrella esférica. No obstante, en sus conclusiones había algo con lo que Einstein jamás comulgaría. Si toda la masa de la estrella se comprimiese en un espacio lo suficientemente pequeño, el espacio-tiempo se curvaría de forma infinita sobre sí mismo. Lo que ocurriría en ese caso es que dentro de ese pequeño espacio -definido por lo que ha pasado a la historia de la Ciencia como radio de Schwarzschild- nada podría escapar de la fuerza gravitatoria de ese cuerpo, ni siquiera la luz. Pero, además, el tiempo también se vería afectado, dilatándose hasta cero. Dicho de otro modo, si una persona se situase cerca de ese objeto ultradenso quedaría, a ojos de un observador externo, congelado en el tiempo.
La Tierra en una canica
Eso ocurriría, según sus cálculos, si toda la masa de nuestro Sol se comprimiera en un radio de algo menos de tres kilómetros o a la Tierra si pudiésemos concentrar su masa en una canica de dos centímetros. Para Einstein esto era, sencillamente, imposible. Pero ni uno ni otro tendrían tiempo para comprobar que de lo que estaban hablando era de los agujeros negros. Schwarzschild murió en el frente a consecuencia de una enfermedad autoinmune que atacó a las células de su piel pocas semanas después de escribir a Einstein. Y éste también moriría antes de que otros gigantes científicos como Stephen Hawking, Roger Penrose, John Wheeler o Freeman Dyson demostrasen en la década de los 60 que la extraña teoría de Schwarzschild era algo más que real.
Al contrario de lo que ocurre con otras disciplinas científicas, los físicos suelen ser muy buenos vendedores de sus teorías y sus nombres son en ocasiones auténticos productos de marketing diseñados para triunfar. Según cuenta el profesor de Física de la Universidad de Columbia Brian Greene en su obra La realidad oculta (Crítica), el hecho de que el abismo gravitatorio creado por los agujeros negros atrape incluso a la luz implica que estas regiones del Universo estén fundidas en negro, por lo que, poco después de que se publicasen los resultados de Schwarzschild, fueron denominadas como «estrellas oscuras». También el efecto que tienen sobre el tiempo llevó a que se propusiese el nombre de «estrellas congeladas». Pero eso fue hasta que, medio siglo después, John Wheeler -físico teórico de la Universidad de Princeton y uno de los pioneros de la fisión nuclear dentro del Proyecto Manhattan que permitió el desarrollo de la bomba atómica- comenzó a estudiar estos objetos cósmicos ultradensos. «Wheeler, casi tan adepto al marketing como a la física», popularizó estas estrellas con el nombre que las ha hecho célebres: «agujeros negros», relata Greene.
En la actualidad, se han descubierto decenas de agujeros negros en todo el Universo y no pasa una sola semana sin que la comunidad científica publique un nuevo avance en el estudio de estos densos objetos cósmicos. Como explicó el brillante físico británico -nacionalizado después estadounidense- Freeman Dyson, los agujeros negros «no son raros y no constituyen un adorno accidental de nuestro universo. Son los únicos lugares del Universo donde la Teoría de la Relatividad de Einstein se muestra en toda su potencia y esplendor».
Sin embargo, a pesar de los casi 100 años que han pasado desde su descubrimiento y de los esfuerzos de algunas de las mentes científicas más brillantes del siglo XX aún hay muchas incógnitas en torno a los agujeros negros.
La última gran esperanza para avanzar en el conocimiento de estos misteriosos objetos se acaba de desvanecer recientemente. A pesar de lo terrorífico que pueda sonar para el gran público el concepto de un gran sumidero cósmico capaz de engullir cualquier objeto del Universo y del que nada puede escapar, hay agujeros negros en todas las galaxias.
Un sumidero cósmico cercano
Se han detectado agujeros negros en algunas cercanas, como en la Nube de Magallanes, a más de 130.000 años luz de distancia de la Tierra. Pero también en la Vía Láctea. De hecho, un enorme agujero negro de cuatro millones de veces la masa del Sol, llamado Sagittarius A*, domina el centro de nuestra galaxia.
Cuando engullen la materia de cualquier objeto cósmico, la gran atracción que generan acelera esta materia hasta una velocidad cercana a la de la luz. Y cuando eso sucede... ¡Fuegos artificiales! Se emiten rayos X
«En la Vía Láctea hay unos 100.000 millones de estrellas y todas ellas giran en torno a este fantástico agujero negro», dice Jorge Casares, investigador del Instituto Astrofísico de Canarias y de la Universidad de la Laguna. «Para tener ligadas gravitacionalmente a tantas estrellas hay que tener un agujero negro como Sagittarius A* o mayor», asegura.
A principios de año, dos de los grupos más punteros en el estudio y seguimiento de este agujero negro -el que dirige Andrea Ghez en la Universidad de California, Los Angeles (UCLA), y el de Stefan Gillessen en el Instituto Max Planck para Física Extraterrestre de Alemania- anunciaban que, por primera vez, los astrónomos tendrían la posibilidad de asistir a uno de los banquetes cósmicos de Sagittarius A*. Las observaciones indicaban que en los meses de marzo o abril de 2014 una nube de gas pasaría por el punto más cercano al agujero negro y sería devorada en apenas unos días.
La comunidad astrofísica esperaba el acontecimiento con impaciencia, pero finalmente no ha sido así. Las previsiones han fallado. La semana pasada, la propia Andrea Ghez publicaba una comunicación en un sistema de intercambio de información científica llamado The Astronomer's Telegram donde aseguraba que, después de alcanzar el punto más cercano a Sagittarius A*, la nube de gas -denominada G2- «está todavía intacta». Incluso en ese punto de máximo acercamiento, la distancia entre la nube de gas y el agujero negro sería todavía de 200 veces la distancia que hay de la Tierra al Sol.
«Se esperaba que se deshiciera en el punto más cercano y no ha sucedido», explica Marc Ribó, investigador experto en agujeros negros de la Universidad de Barcelona. «Se sigue observando como si fuera una fuente puntual, lo que permite pensar que G2 podría ser una nube de gas, pero que está alrededor de una estrella», opina.
Las previsiones científicas indicaban que la enorme fuerza gravitacional del agujero negro del centro de nuestra galaxia debería atraer a la nube de gas a velocidades de varios miles de kilómetros por segundo. Sólo para dar una idea de la magnitud, a esa velocidad se podría volar de desde Estados Unidos a España en menos de un segundo. Sin embargo, la fuerza gravitacional de esa posible estrella del interior de la nube de gas podría haber impedido que G2 fuera engullida por el agujero negro.
Representación artística del disco y de los chorros eyectados en el...
Representación artística del disco y de los chorros eyectados en el agujero negro de Cygnus X-1.
NASA
«Todavía hay gas que está siendo arrancado de este objeto, de la nube G2», asegura a EL MUNDO Andrea Ghez. «Y este material aún podría chocar eventualmente con Sagittarius A*, incluso aunque hubiese una estrella en el centro que evite que el objeto entero sea atraído en forma de espiral y devorado por el agujero negro. Así que sólo es cuestión del grado y la magnitud del evento que podamos observar», dice.
Sea como fuese, se ha desvanecido una oportunidad única para estudiar la acreción de una gran cantidad de materia en uno de los agujeros negros que predecía la Teoría de la Relatividad de Einstein y que demostró en 1916 Karl Schwarzschild desde los campos de batalla rusos.
Resulta paradójico pensar que, a pesar de la urgente actualidad que tiene el estudio del centro de la galaxia para los astrofísicos, Sagittarius A* se encuentra a 26.000 años luz de distancia de la Tierra, por lo que los acontecimientos que se estudian hoy ocurrieron en realidad hace 26.000 años.
Para los astrofísicos, la oportunidad perdida tampoco es el fin del mundo. «Puede ser que volvamos a tener alguna otra oportunidad a lo largo de nuestra vida», afirma Ribó. «Si hubiera pasado hace 15 años, no lo hubiéramos visto, porque los instrumentos de observación de entonces no lo permitían», dice. Y tiene mucha razón. El avance de las tecnologías de observación espacial de los últimos años han sido determinantes. Pero no sólo la construcción de potentes telescopios con espejos de varios metros de diámetro en el desierto de Atacama de Chile o en Hawai. También están siendo fundamentales otras tecnologías para profundizar en el estudio de los misteriosos agujeros negros.
Fuegos artificiales
Pero la Primera Guerra Mundial complicó mucho su trabajo científico. Cuando Einstein publicó los artículos en los que enunciaba las ecuaciones del campo gravitatorio de su teoría, Schwarzschild se encontraba destinado en los campos de batalla de Rusia, encargado de calcular la trayectoria de los proyectiles de artillería. Él mismo se había presentado voluntario al ejército del Imperio alemán. Pero el trabajo debía quedársele pequeño porque, tras leer el trabajo de Einstein, se puso inmediatamente a aplicar las nuevas ecuaciones a los objetos del Cosmos.
Y las conclusiones no tardaron en llegar. En enero de 1916 -sólo tres meses después de la publicación de la Teoría de la Relatividad General-, Schwarzschild envió por correo sus resultados a Einstein. «Estoy seguro de que permitirán a su teoría brillar con mayor pureza», escribió desde el frente ruso el astrofísico alemán. El propio genio de la Física se rindió ante los cálculos de Schwarzschild. «Jamás habría esperado que la solución exacta al problema pudiera formularse de una manera tan simple», respondió, según cita el escritor Walter Isaacson en la biografía titulada Einstein, su vida y su universo (Debate).
Dyson: «Los agujeros negros no son raros y no constituyen un adorno accidental de nuestro universo. Son los únicos lugares del Universo donde la Teoría de la Relatividad de Einstein se muestra en toda su potencia y esplendor»
Pero no en todo estaba de acuerdo con los cálculos de Schwarzschild. Éste se había centrado en la curvatura del espacio-tiempo, tanto fuera como en el interior de una estrella esférica. No obstante, en sus conclusiones había algo con lo que Einstein jamás comulgaría. Si toda la masa de la estrella se comprimiese en un espacio lo suficientemente pequeño, el espacio-tiempo se curvaría de forma infinita sobre sí mismo. Lo que ocurriría en ese caso es que dentro de ese pequeño espacio -definido por lo que ha pasado a la historia de la Ciencia como radio de Schwarzschild- nada podría escapar de la fuerza gravitatoria de ese cuerpo, ni siquiera la luz. Pero, además, el tiempo también se vería afectado, dilatándose hasta cero. Dicho de otro modo, si una persona se situase cerca de ese objeto ultradenso quedaría, a ojos de un observador externo, congelado en el tiempo.
La Tierra en una canica
Eso ocurriría, según sus cálculos, si toda la masa de nuestro Sol se comprimiera en un radio de algo menos de tres kilómetros o a la Tierra si pudiésemos concentrar su masa en una canica de dos centímetros. Para Einstein esto era, sencillamente, imposible. Pero ni uno ni otro tendrían tiempo para comprobar que de lo que estaban hablando era de los agujeros negros. Schwarzschild murió en el frente a consecuencia de una enfermedad autoinmune que atacó a las células de su piel pocas semanas después de escribir a Einstein. Y éste también moriría antes de que otros gigantes científicos como Stephen Hawking, Roger Penrose, John Wheeler o Freeman Dyson demostrasen en la década de los 60 que la extraña teoría de Schwarzschild era algo más que real.
Al contrario de lo que ocurre con otras disciplinas científicas, los físicos suelen ser muy buenos vendedores de sus teorías y sus nombres son en ocasiones auténticos productos de marketing diseñados para triunfar. Según cuenta el profesor de Física de la Universidad de Columbia Brian Greene en su obra La realidad oculta (Crítica), el hecho de que el abismo gravitatorio creado por los agujeros negros atrape incluso a la luz implica que estas regiones del Universo estén fundidas en negro, por lo que, poco después de que se publicasen los resultados de Schwarzschild, fueron denominadas como «estrellas oscuras». También el efecto que tienen sobre el tiempo llevó a que se propusiese el nombre de «estrellas congeladas». Pero eso fue hasta que, medio siglo después, John Wheeler -físico teórico de la Universidad de Princeton y uno de los pioneros de la fisión nuclear dentro del Proyecto Manhattan que permitió el desarrollo de la bomba atómica- comenzó a estudiar estos objetos cósmicos ultradensos. «Wheeler, casi tan adepto al marketing como a la física», popularizó estas estrellas con el nombre que las ha hecho célebres: «agujeros negros», relata Greene.
En la actualidad, se han descubierto decenas de agujeros negros en todo el Universo y no pasa una sola semana sin que la comunidad científica publique un nuevo avance en el estudio de estos densos objetos cósmicos. Como explicó el brillante físico británico -nacionalizado después estadounidense- Freeman Dyson, los agujeros negros «no son raros y no constituyen un adorno accidental de nuestro universo. Son los únicos lugares del Universo donde la Teoría de la Relatividad de Einstein se muestra en toda su potencia y esplendor».
Sin embargo, a pesar de los casi 100 años que han pasado desde su descubrimiento y de los esfuerzos de algunas de las mentes científicas más brillantes del siglo XX aún hay muchas incógnitas en torno a los agujeros negros.
La última gran esperanza para avanzar en el conocimiento de estos misteriosos objetos se acaba de desvanecer recientemente. A pesar de lo terrorífico que pueda sonar para el gran público el concepto de un gran sumidero cósmico capaz de engullir cualquier objeto del Universo y del que nada puede escapar, hay agujeros negros en todas las galaxias.
Un sumidero cósmico cercano
Se han detectado agujeros negros en algunas cercanas, como en la Nube de Magallanes, a más de 130.000 años luz de distancia de la Tierra. Pero también en la Vía Láctea. De hecho, un enorme agujero negro de cuatro millones de veces la masa del Sol, llamado Sagittarius A*, domina el centro de nuestra galaxia.
Cuando engullen la materia de cualquier objeto cósmico, la gran atracción que generan acelera esta materia hasta una velocidad cercana a la de la luz. Y cuando eso sucede... ¡Fuegos artificiales! Se emiten rayos X
«En la Vía Láctea hay unos 100.000 millones de estrellas y todas ellas giran en torno a este fantástico agujero negro», dice Jorge Casares, investigador del Instituto Astrofísico de Canarias y de la Universidad de la Laguna. «Para tener ligadas gravitacionalmente a tantas estrellas hay que tener un agujero negro como Sagittarius A* o mayor», asegura.
A principios de año, dos de los grupos más punteros en el estudio y seguimiento de este agujero negro -el que dirige Andrea Ghez en la Universidad de California, Los Angeles (UCLA), y el de Stefan Gillessen en el Instituto Max Planck para Física Extraterrestre de Alemania- anunciaban que, por primera vez, los astrónomos tendrían la posibilidad de asistir a uno de los banquetes cósmicos de Sagittarius A*. Las observaciones indicaban que en los meses de marzo o abril de 2014 una nube de gas pasaría por el punto más cercano al agujero negro y sería devorada en apenas unos días.
La comunidad astrofísica esperaba el acontecimiento con impaciencia, pero finalmente no ha sido así. Las previsiones han fallado. La semana pasada, la propia Andrea Ghez publicaba una comunicación en un sistema de intercambio de información científica llamado The Astronomer's Telegram donde aseguraba que, después de alcanzar el punto más cercano a Sagittarius A*, la nube de gas -denominada G2- «está todavía intacta». Incluso en ese punto de máximo acercamiento, la distancia entre la nube de gas y el agujero negro sería todavía de 200 veces la distancia que hay de la Tierra al Sol.
«Se esperaba que se deshiciera en el punto más cercano y no ha sucedido», explica Marc Ribó, investigador experto en agujeros negros de la Universidad de Barcelona. «Se sigue observando como si fuera una fuente puntual, lo que permite pensar que G2 podría ser una nube de gas, pero que está alrededor de una estrella», opina.
Las previsiones científicas indicaban que la enorme fuerza gravitacional del agujero negro del centro de nuestra galaxia debería atraer a la nube de gas a velocidades de varios miles de kilómetros por segundo. Sólo para dar una idea de la magnitud, a esa velocidad se podría volar de desde Estados Unidos a España en menos de un segundo. Sin embargo, la fuerza gravitacional de esa posible estrella del interior de la nube de gas podría haber impedido que G2 fuera engullida por el agujero negro.
Representación artística del disco y de los chorros eyectados en el...
Representación artística del disco y de los chorros eyectados en el agujero negro de Cygnus X-1.
NASA
«Todavía hay gas que está siendo arrancado de este objeto, de la nube G2», asegura a EL MUNDO Andrea Ghez. «Y este material aún podría chocar eventualmente con Sagittarius A*, incluso aunque hubiese una estrella en el centro que evite que el objeto entero sea atraído en forma de espiral y devorado por el agujero negro. Así que sólo es cuestión del grado y la magnitud del evento que podamos observar», dice.
Sea como fuese, se ha desvanecido una oportunidad única para estudiar la acreción de una gran cantidad de materia en uno de los agujeros negros que predecía la Teoría de la Relatividad de Einstein y que demostró en 1916 Karl Schwarzschild desde los campos de batalla rusos.
Resulta paradójico pensar que, a pesar de la urgente actualidad que tiene el estudio del centro de la galaxia para los astrofísicos, Sagittarius A* se encuentra a 26.000 años luz de distancia de la Tierra, por lo que los acontecimientos que se estudian hoy ocurrieron en realidad hace 26.000 años.
Para los astrofísicos, la oportunidad perdida tampoco es el fin del mundo. «Puede ser que volvamos a tener alguna otra oportunidad a lo largo de nuestra vida», afirma Ribó. «Si hubiera pasado hace 15 años, no lo hubiéramos visto, porque los instrumentos de observación de entonces no lo permitían», dice. Y tiene mucha razón. El avance de las tecnologías de observación espacial de los últimos años han sido determinantes. Pero no sólo la construcción de potentes telescopios con espejos de varios metros de diámetro en el desierto de Atacama de Chile o en Hawai. También están siendo fundamentales otras tecnologías para profundizar en el estudio de los misteriosos agujeros negros.
Fuegos artificiales
jueves, 8 de mayo de 2014
Un Universo virtual que se parece mucho a la realidad
Un modelo informático representa la evolución a lo largo de 13.000 millones de años de una porción representativa del cosmos
En una simulación que empieza muy poco después del Big Bang y que se extiende hasta la actualidad, astrónomos y expertos informáticos han conseguido la mayor aproximación hasta la fecha a la realidad observable del Universo.
Han simulado lo que pasó a lo largo de 13.000 millones de años en un cubo de 346 millones de años luz de lado (la estrella más cercana al Sol está a 4,2 años luz) y han conseguido que surja en sus pantallas la mezcla de galaxias elípticas y espirales que se observa en la realidad, así como detalles a mucha menor escala, la del gas y las estrellas, que con simulaciones anteriores no se apreciaban o no eran correctos.
En el Universo —un laboratorio único—, hay que recordar que mirar más lejos en el espacio es también mirar más atrás en el tiempo.
La simulación informática es, al mismo tiempo, una confirmación del modelo aceptado del Universo, que con solo seis parámetros es capaz de explicar casi todos los datos obtenidos mediante la observación, desde los primeros minutos de su existencia a la actualidad, como recuerda el astrónomo Michael Boylan-Kolchin en Nature, la misma revista en la que se publican los resultados.
A pesar de que la materia visible solo forma el 5% del Universo, y que sobre el resto (la energía oscura y la materia oscura) se desconoce casi todo, modelar esta pequeña parte ha resultado muy difícil por el amplísimo rango de distintas escalas implicadas.
El esfuerzo actual se basa en una mayor potencia informática y en incorporar al modelo los datos obtenidos en los últimos años mediante observaciones, que incluyen el comportamiento de las enigmáticas energía oscura y materia oscura, como explica Mark Vogelsberger, del MIT, que ha dirigido el estudio.
En el principio, en esta simulación, es la materia oscura, y de ella surge la materia ordinaria o visible. “Una de las razones por las cuales hicimos la simulación es que hemos aprendido mucho sobre la física del Universo en los últimos años y creemos que comprendemos bien su composición”, ha declarado a Space.com.
Entre los datos suministrados a los ordenadores están los relativos al enfriamiento del gas primordial, la evolución de las estrellas, la contribución energética de las explosiones de supernova, la producción de elementos químicos y los fenómenos periféricos a los agujeros negros supermasivos.
Muchos de estos procesos no se comprenden completamente e interactúan de forma compleja y no lineal, recuerda Boyla-Kolchin, quien también señala que el modelo tiene defectos, como su incapacidad de simular la formación de los agujeros negros en el Universo primitivo y la evolución de las galaxias menos brillantes alrededor de la Vía Láctea.
Para elaborar el modelo Illustris se han utilizado más de 8.000 ordenadores, con una capacidad de proceso, cada uno, similar a un PC, y el proceso de los datos numéricos llevó tres meses.
Con un solo PC se hubiera tardado 2.000 años, explican los investigadores, que proceden de Estados Unidos, Alemania y Reino Unido.
En una simulación que empieza muy poco después del Big Bang y que se extiende hasta la actualidad, astrónomos y expertos informáticos han conseguido la mayor aproximación hasta la fecha a la realidad observable del Universo.
Han simulado lo que pasó a lo largo de 13.000 millones de años en un cubo de 346 millones de años luz de lado (la estrella más cercana al Sol está a 4,2 años luz) y han conseguido que surja en sus pantallas la mezcla de galaxias elípticas y espirales que se observa en la realidad, así como detalles a mucha menor escala, la del gas y las estrellas, que con simulaciones anteriores no se apreciaban o no eran correctos.
En el Universo —un laboratorio único—, hay que recordar que mirar más lejos en el espacio es también mirar más atrás en el tiempo.
La simulación informática es, al mismo tiempo, una confirmación del modelo aceptado del Universo, que con solo seis parámetros es capaz de explicar casi todos los datos obtenidos mediante la observación, desde los primeros minutos de su existencia a la actualidad, como recuerda el astrónomo Michael Boylan-Kolchin en Nature, la misma revista en la que se publican los resultados.
A pesar de que la materia visible solo forma el 5% del Universo, y que sobre el resto (la energía oscura y la materia oscura) se desconoce casi todo, modelar esta pequeña parte ha resultado muy difícil por el amplísimo rango de distintas escalas implicadas.
El esfuerzo actual se basa en una mayor potencia informática y en incorporar al modelo los datos obtenidos en los últimos años mediante observaciones, que incluyen el comportamiento de las enigmáticas energía oscura y materia oscura, como explica Mark Vogelsberger, del MIT, que ha dirigido el estudio.
En el principio, en esta simulación, es la materia oscura, y de ella surge la materia ordinaria o visible. “Una de las razones por las cuales hicimos la simulación es que hemos aprendido mucho sobre la física del Universo en los últimos años y creemos que comprendemos bien su composición”, ha declarado a Space.com.
Muchos de estos procesos no se comprenden completamente e interactúan de forma compleja y no lineal, recuerda Boyla-Kolchin, quien también señala que el modelo tiene defectos, como su incapacidad de simular la formación de los agujeros negros en el Universo primitivo y la evolución de las galaxias menos brillantes alrededor de la Vía Láctea.
Para elaborar el modelo Illustris se han utilizado más de 8.000 ordenadores, con una capacidad de proceso, cada uno, similar a un PC, y el proceso de los datos numéricos llevó tres meses.
Con un solo PC se hubiera tardado 2.000 años, explican los investigadores, que proceden de Estados Unidos, Alemania y Reino Unido.
Suscribirse a:
Entradas (Atom)