Los agujeros negros estaban, sin que apenas nadie lo percibiera en aquel entonces, en el centro la Teoría de la Relatividad General de Einstein. Nadie excepto el excelso matemático y astrofísico que dirigía a principios del Siglo XX el Observatorio de Postdam, Karl Schwarzschild, quien se daría cuenta pronto de su existencia y su importancia en la gravitación universal.
Pero la Primera Guerra Mundial complicó mucho su trabajo científico. Cuando Einstein publicó los artículos en los que enunciaba las ecuaciones del campo gravitatorio de su teoría, Schwarzschild se encontraba destinado en los campos de batalla de Rusia, encargado de calcular la trayectoria de los proyectiles de artillería. Él mismo se había presentado voluntario al ejército del Imperio alemán. Pero el trabajo debía quedársele pequeño porque, tras leer el trabajo de Einstein, se puso inmediatamente a aplicar las nuevas ecuaciones a los objetos del Cosmos.
Y las conclusiones no tardaron en llegar. En enero de 1916 -sólo tres meses después de la publicación de la Teoría de la Relatividad General-, Schwarzschild envió por correo sus resultados a Einstein. «Estoy seguro de que permitirán a su teoría brillar con mayor pureza», escribió desde el frente ruso el astrofísico alemán. El propio genio de la Física se rindió ante los cálculos de Schwarzschild. «Jamás habría esperado que la solución exacta al problema pudiera formularse de una manera tan simple», respondió, según cita el escritor Walter Isaacson en la biografía titulada Einstein, su vida y su universo (Debate).
Dyson: «Los agujeros negros no son raros y no constituyen un adorno accidental de nuestro universo. Son los únicos lugares del Universo donde la Teoría de la Relatividad de Einstein se muestra en toda su potencia y esplendor»
Pero no en todo estaba de acuerdo con los cálculos de Schwarzschild. Éste se había centrado en la curvatura del espacio-tiempo, tanto fuera como en el interior de una estrella esférica. No obstante, en sus conclusiones había algo con lo que Einstein jamás comulgaría. Si toda la masa de la estrella se comprimiese en un espacio lo suficientemente pequeño, el espacio-tiempo se curvaría de forma infinita sobre sí mismo. Lo que ocurriría en ese caso es que dentro de ese pequeño espacio -definido por lo que ha pasado a la historia de la Ciencia como radio de Schwarzschild- nada podría escapar de la fuerza gravitatoria de ese cuerpo, ni siquiera la luz. Pero, además, el tiempo también se vería afectado, dilatándose hasta cero. Dicho de otro modo, si una persona se situase cerca de ese objeto ultradenso quedaría, a ojos de un observador externo, congelado en el tiempo.
La Tierra en una canica
Eso ocurriría, según sus cálculos, si toda la masa de nuestro Sol se comprimiera en un radio de algo menos de tres kilómetros o a la Tierra si pudiésemos concentrar su masa en una canica de dos centímetros. Para Einstein esto era, sencillamente, imposible. Pero ni uno ni otro tendrían tiempo para comprobar que de lo que estaban hablando era de los agujeros negros. Schwarzschild murió en el frente a consecuencia de una enfermedad autoinmune que atacó a las células de su piel pocas semanas después de escribir a Einstein. Y éste también moriría antes de que otros gigantes científicos como Stephen Hawking, Roger Penrose, John Wheeler o Freeman Dyson demostrasen en la década de los 60 que la extraña teoría de Schwarzschild era algo más que real.
Al contrario de lo que ocurre con otras disciplinas científicas, los físicos suelen ser muy buenos vendedores de sus teorías y sus nombres son en ocasiones auténticos productos de marketing diseñados para triunfar. Según cuenta el profesor de Física de la Universidad de Columbia Brian Greene en su obra La realidad oculta (Crítica), el hecho de que el abismo gravitatorio creado por los agujeros negros atrape incluso a la luz implica que estas regiones del Universo estén fundidas en negro, por lo que, poco después de que se publicasen los resultados de Schwarzschild, fueron denominadas como «estrellas oscuras». También el efecto que tienen sobre el tiempo llevó a que se propusiese el nombre de «estrellas congeladas». Pero eso fue hasta que, medio siglo después, John Wheeler -físico teórico de la Universidad de Princeton y uno de los pioneros de la fisión nuclear dentro del Proyecto Manhattan que permitió el desarrollo de la bomba atómica- comenzó a estudiar estos objetos cósmicos ultradensos. «Wheeler, casi tan adepto al marketing como a la física», popularizó estas estrellas con el nombre que las ha hecho célebres: «agujeros negros», relata Greene.
En la actualidad, se han descubierto decenas de agujeros negros en todo el Universo y no pasa una sola semana sin que la comunidad científica publique un nuevo avance en el estudio de estos densos objetos cósmicos. Como explicó el brillante físico británico -nacionalizado después estadounidense- Freeman Dyson, los agujeros negros «no son raros y no constituyen un adorno accidental de nuestro universo. Son los únicos lugares del Universo donde la Teoría de la Relatividad de Einstein se muestra en toda su potencia y esplendor».
Sin embargo, a pesar de los casi 100 años que han pasado desde su descubrimiento y de los esfuerzos de algunas de las mentes científicas más brillantes del siglo XX aún hay muchas incógnitas en torno a los agujeros negros.
La última gran esperanza para avanzar en el conocimiento de estos misteriosos objetos se acaba de desvanecer recientemente. A pesar de lo terrorífico que pueda sonar para el gran público el concepto de un gran sumidero cósmico capaz de engullir cualquier objeto del Universo y del que nada puede escapar, hay agujeros negros en todas las galaxias.
Un sumidero cósmico cercano
Se han detectado agujeros negros en algunas cercanas, como en la Nube de Magallanes, a más de 130.000 años luz de distancia de la Tierra. Pero también en la Vía Láctea. De hecho, un enorme agujero negro de cuatro millones de veces la masa del Sol, llamado Sagittarius A*, domina el centro de nuestra galaxia.
Cuando engullen la materia de cualquier objeto cósmico, la gran atracción que generan acelera esta materia hasta una velocidad cercana a la de la luz. Y cuando eso sucede... ¡Fuegos artificiales! Se emiten rayos X
«En la Vía Láctea hay unos 100.000 millones de estrellas y todas ellas giran en torno a este fantástico agujero negro», dice Jorge Casares, investigador del Instituto Astrofísico de Canarias y de la Universidad de la Laguna. «Para tener ligadas gravitacionalmente a tantas estrellas hay que tener un agujero negro como Sagittarius A* o mayor», asegura.
A principios de año, dos de los grupos más punteros en el estudio y seguimiento de este agujero negro -el que dirige Andrea Ghez en la Universidad de California, Los Angeles (UCLA), y el de Stefan Gillessen en el Instituto Max Planck para Física Extraterrestre de Alemania- anunciaban que, por primera vez, los astrónomos tendrían la posibilidad de asistir a uno de los banquetes cósmicos de Sagittarius A*. Las observaciones indicaban que en los meses de marzo o abril de 2014 una nube de gas pasaría por el punto más cercano al agujero negro y sería devorada en apenas unos días.
La comunidad astrofísica esperaba el acontecimiento con impaciencia, pero finalmente no ha sido así. Las previsiones han fallado. La semana pasada, la propia Andrea Ghez publicaba una comunicación en un sistema de intercambio de información científica llamado The Astronomer's Telegram donde aseguraba que, después de alcanzar el punto más cercano a Sagittarius A*, la nube de gas -denominada G2- «está todavía intacta». Incluso en ese punto de máximo acercamiento, la distancia entre la nube de gas y el agujero negro sería todavía de 200 veces la distancia que hay de la Tierra al Sol.
«Se esperaba que se deshiciera en el punto más cercano y no ha sucedido», explica Marc Ribó, investigador experto en agujeros negros de la Universidad de Barcelona. «Se sigue observando como si fuera una fuente puntual, lo que permite pensar que G2 podría ser una nube de gas, pero que está alrededor de una estrella», opina.
Las previsiones científicas indicaban que la enorme fuerza gravitacional del agujero negro del centro de nuestra galaxia debería atraer a la nube de gas a velocidades de varios miles de kilómetros por segundo. Sólo para dar una idea de la magnitud, a esa velocidad se podría volar de desde Estados Unidos a España en menos de un segundo. Sin embargo, la fuerza gravitacional de esa posible estrella del interior de la nube de gas podría haber impedido que G2 fuera engullida por el agujero negro.
Representación artística del disco y de los chorros eyectados en el...
Representación artística del disco y de los chorros eyectados en el agujero negro de Cygnus X-1.
NASA
«Todavía hay gas que está siendo arrancado de este objeto, de la nube G2», asegura a EL MUNDO Andrea Ghez. «Y este material aún podría chocar eventualmente con Sagittarius A*, incluso aunque hubiese una estrella en el centro que evite que el objeto entero sea atraído en forma de espiral y devorado por el agujero negro. Así que sólo es cuestión del grado y la magnitud del evento que podamos observar», dice.
Sea como fuese, se ha desvanecido una oportunidad única para estudiar la acreción de una gran cantidad de materia en uno de los agujeros negros que predecía la Teoría de la Relatividad de Einstein y que demostró en 1916 Karl Schwarzschild desde los campos de batalla rusos.
Resulta paradójico pensar que, a pesar de la urgente actualidad que tiene el estudio del centro de la galaxia para los astrofísicos, Sagittarius A* se encuentra a 26.000 años luz de distancia de la Tierra, por lo que los acontecimientos que se estudian hoy ocurrieron en realidad hace 26.000 años.
Para los astrofísicos, la oportunidad perdida tampoco es el fin del mundo. «Puede ser que volvamos a tener alguna otra oportunidad a lo largo de nuestra vida», afirma Ribó. «Si hubiera pasado hace 15 años, no lo hubiéramos visto, porque los instrumentos de observación de entonces no lo permitían», dice. Y tiene mucha razón. El avance de las tecnologías de observación espacial de los últimos años han sido determinantes. Pero no sólo la construcción de potentes telescopios con espejos de varios metros de diámetro en el desierto de Atacama de Chile o en Hawai. También están siendo fundamentales otras tecnologías para profundizar en el estudio de los misteriosos agujeros negros.
Fuegos artificiales
No hay comentarios:
Publicar un comentario